Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(4): e94832, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24752170

RESUMO

The dimorphic fungus Paracoccidioides spp. is responsible for paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America, causing serious public health problems. Adequate treatment of mycotic infections is difficult, since fungi are eukaryotic organisms with a structure and metabolism similar to those of eukaryotic hosts. In this way, specific fungus targets have become important to search of new antifungal compound. The role of the glyoxylate cycle and its enzymes in microbial virulence has been reported in many fungal pathogens, including Paracoccidioides spp. Here, we show the action of argentilactone and its semi-synthetic derivative reduced argentilactone on recombinant and native isocitrate lyase from Paracoccidioides lutzii Pb01 (PbICL) in the presence of different carbon sources, acetate and glucose. Additionally, argentilactone and its semi-synthetic derivative reduced argentilactone exhibited relevant inhibitory activity against P. lutzii Pb01 yeast cells and dose-dependently influenced the transition from the mycelium to yeast phase. The other oxygenated derivatives tested, epoxy argentilactone and diol argentilactone-, did not show inhibitory action on the fungus. The results were supported by in silico experiments.


Assuntos
Inibidores Enzimáticos/farmacologia , Isocitrato Liase/antagonistas & inibidores , Lactonas/farmacologia , Paracoccidioides/enzimologia , Sítios de Ligação , Inibidores Enzimáticos/química , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Lactonas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Micélio/citologia , Micélio/efeitos dos fármacos , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/crescimento & desenvolvimento , Solventes/química , Homologia Estrutural de Proteína , Termodinâmica
2.
BMC Microbiol ; 13: 107, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23672539

RESUMO

BACKGROUND: The fungus Paracoccidioides spp is the agent of paracoccidioidomycosis (PCM), a pulmonary mycosis acquired by the inhalation of fungal propagules. Paracoccidioides malate synthase (PbMLS) is important in the infectious process of Paracoccidioides spp because the transcript is up-regulated during the transition from mycelium to yeast and in yeast cells during phagocytosis by murine macrophages. In addition, PbMLS acts as an adhesin in Paracoccidioides spp. The evidence for the multifunctionality of PbMLS indicates that it could interact with other proteins from the fungus and host. The objective of this study was to identify and analyze proteins that possibly bind to PbMLS (PbMLS-interacting proteins) because protein interactions are intrinsic to cell processes, and it might be possible to infer the function of a protein through the identification of its ligands. RESULTS: The search for interactions was performed using an in vivo assay with a two-hybrid library constructed in S. cerevisiae; the transcripts were sequenced and identified. In addition, an in vitro assay using pull-down GST methodology with different protein extracts (yeast, mycelium, yeast-secreted proteins and macrophage) was performed, and the resulting interactions were identified by mass spectrometry (MS). Some of the protein interactions were confirmed by Far-Western blotting using specific antibodies, and the interaction of PbMLS with macrophages was validated by indirect immunofluorescence and confocal microscopy. In silico analysis using molecular modeling, dynamics and docking identified the amino acids that were involved in the interactions between PbMLS and PbMLS-interacting proteins. Finally, the interactions were visualized graphically using Osprey software. CONCLUSION: These observations indicate that PbMLS interacts with proteins that are in different functional categories, such as cellular transport, protein biosynthesis, modification and degradation of proteins and signal transduction. These data suggest that PbMLS could play different roles in the fungal cell.


Assuntos
Malato Sintase/metabolismo , Paracoccidioides/enzimologia , Mapeamento de Interação de Proteínas , Far-Western Blotting , Centrifugação , Espectrometria de Massas , Microscopia Confocal , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...